

Introduction to yara-ctypes-python

What is yara-ctypes:

	A powerful python wrapper for yara-project’s libyara v1.6 [http://code.google.com/p/yara-project].

	Supports thread safe matching of YARA rules.

	namespace management to allow easy loading of multiple YARA rules into a
single libyara context.

	Comes with a scan module which exposes a user CLI and demonstrates a pattern
for executing match jobs across a thread pool.

Why:

	ctypes releases the GIL on system function calls... Run your PC to its
true potential.

	No more building the PyC extension...

	I found a few bugs and memory leaks and wanted to make my life simple.

As a reference and guide to yara-ctypes see: yara-ctypes documentation [http://packages.python.org/yara/]

For additional tips / tricks with this wrapper feel free to post a question at
the github yara-ctypes/issues [https://github.com/mjdorma/yara-ctypes/issues] page.

Project hosting provided by github.com [https://github.com/mjdorma/yara-ctypes].

[mjdorma+yara-ctypes@gmail.com]

Getting started

	Install guide
	PyPi install

	Download and install the master

	Missing a dll? Try installing MS VC++ 2010 redistributable package

	Failing to import libyara

	How to scan using yara-ctypes yara.scan
	Executing yara.cli

	Performing a scan

	YARA rules files and folder

	Included rules folder

	Using yara-ctypes rules folders

	Building libyara-1.6 for yara-ctypes
	Patch a clean checkout of yara-1.6

	Building for Ubuntu

	Building for Windows

	Building for OS X Mountain Lion

	Bundling libyara shared library files

Reference

	yara.scan — Thread pool execution of rules matching
	Scanner

	PathScanner

	FileChunkScanner

	PidScanner

	yara.cli — A command line YARA rules scanning utility

	yara.rules — YARA namespaces, compilation, and matching
	Rules

	yara.rules.load_rules()

	yara.rules.compile()

	yara.libyara_wrapper — ctypes wrapper for libyara

Indices and tables

	Index

	Module Index

	Search Page

Install guide

Things to know about installing yara-ctypes.

PyPi install

Simply run the following:

pip install yara

If you do not have pip, you can click here to find [http://pypi.python.org/pypi/yara/#downloads] the latest download
package.

Unzip than install:

python setup.py install

Download and install the master

You can find the master copy of yara-ctypes on github [https://github.com/mjdorma/yara-ctypes].

Here is how to install from the master:

wget -O master.zip https://github.com/mjdorma/yara-ctypes/zipball/master
unzip master.zip
cd mjdorma-yara-ctypes-XXX
python setup.py install

Missing a dll? Try installing MS VC++ 2010 redistributable package

The shipped dlls’ were built using Visual Studio 2010. If you do not have the
appropriate runtime already installed you will get an error message pop
up saying you are missing msvcr100.dll. Download and install the
appropriate redistribution package for your platform:

	Microsoft Visual C++ 2010 Redistributable Package (x86) [http://www.microsoft.com/en-us/download/details.aspx?id=5555] (or vcredist_x86.exe [http://download.microsoft.com/download/5/B/C/5BC5DBB3-652D-4DCE-B14A-475AB85EEF6E/vcredist_x86.exe])

	Microsoft Visual C++ 2010 Redistributable Package (x64) [http://www.microsoft.com/en-us/download/details.aspx?id=14632] (or vcredist_x64.exe [http://download.microsoft.com/download/3/2/2/3224B87F-CFA0-4E70-BDA3-3DE650EFEBA5/vcredist_x64.exe])

Failing to import libyara

At this point you need to figure out if the shipped library file is compatible
with your system/platform. You may need to build your own libyara library from
scratch.

See Building libyara-1.6 for yara-ctypes for more information.

How to scan using yara-ctypes yara.scan

This page should contain all of the information required to successfully
operate yara.scan as a system scanning utility.

Executing yara.cli

Once yara-ctypes is installed into your Python environment you can run the scan module by executing the scan module as follows:

$ python -m yara.cli -h

or:

$ yara-ctypes -h

Performing a scan

List available modules:

$ yara-ctypes --list

Rules + example.packer_rules
 + hbgary.sockets
 + hbgary.libs
 + hbgary.compression
 + hbgary.fingerprint
 + hbgary.integerparsing
 + hbgary.antidebug
 + hbgary.microsoft

Scan process memory:

$ ps
 PID TTY TIME CMD
 6975 pts/7 00:00:05 bash
13479 pts/7 00:00:00 ps

$ sudo yara-ctypes --proc 6975 > result.out

Rules + hbgary.compiler
 + example.packer_rules
 + hbgary.sockets
 + hbgary.libs
 + hbgary.compression
 + hbgary.fingerprint
 + hbgary.integerparsing
 + hbgary.antidebug
 + hbgary.microsoft
scan queue: 0 result queue: 0
scanned 1 items... done.

$ ls -lah result.out

-rw-rw-r-- 1 mick mick 222K Sep 1 17:36 result.out

Scan a file:

$ sudo yara-ctypes /usr/bin/ > result.out

Rules + hbgary.compiler
 + example.packer_rules
 + hbgary.sockets
 + hbgary.libs
 + hbgary.compression
 + hbgary.fingerprint
 + hbgary.integerparsing
 + hbgary.antidebug
 + hbgary.microsoft
scan queue: 0 result queue: 0
scanned 1518 items... done.

> ls -lah result.out

-rw-rw-r-- 1 mick mick 17M Sep 1 17:37 result.out

YARA rules files and folder

If you are not familiar with YARA rules files visit yara project [http://code.google.com/p/yara-project] to learn
more.

To make life simple the yara.rules module supports filtered namespaced
loading of multiple YARA rules files into a single context. This is managed
through a translation of folder names and file names into ‘.’ seperated names.
The root of this folder structured is defined by the YARA_RULES path.

By default the YARA_RULES path points to the following path:

os.path.dirname(:mod:`yara.rules`.__file__) + '/rules'

Included rules folder

The rules folder shipped with yara-ctypes helps with testing and works as a
good example set of YARA rules for people to get started from.

Packaged rules folder:

./rules/hbgary/libs.yar
./rules/hbgary/compression.yar
./rules/hbgary/fingerprint.yar
./rules/hbgary/microsoft.yar
./rules/hbgary/sockets.yar
./rules/hbgary/integerparsing.yar
./rules/hbgary/compiler.yar
./rules/hbgary/antidebug.yar
./rules/example/packer_rules.yar

Building a Rules object using yara.load_rules() will load all
of the above yar files into the following namespaces:

hbgary.libs
hbgary.compression
hbgary.fingerprint
hbgary.microsoft
hbgary.sockets
hbgary.integerparsing
hbgary.compiler
hbgary.antidebug
example.packer_rules

Using yara-ctypes rules folders

This section will walk you through defining and loading a realistic rules
folder.

A practical rules folder example:

We set out by defining two sub directories, one for our process memory
specific signatures and the other for our file signatures.

Here is what it looks like:

~/rules/
 pid/loggers.yar
 pid/spammers.yar
 pid/infectors.yar
 file/loggers.yar
 file/spammers.yar
 file/infectors.yar

Accessing a rules folder:

To access our new rules folder we need to let yara.scan know where to
look. We can do this by setting the env variable YARA_RULES to export
YARA_RULES=~/rules/. Alternatively, we can specify the root of the rules
folder with the input argument --root=~/rules/.

Confirm the rules are being loaded by yara.scan:

$ yara-ctypes --list
Rules + file.loggers
 + file.infectors
 + file.spammers
 + pid.spammers
 + pid.loggers
 + pid.infectors

Blacklisting and whitelisting namespaces:

Let’s say we want to scan a bunch of files against all of the yar files under
~/rules/file/. We can do this two ways. By either setting our
--whitelist=file or setting our --blacklist=pid.

i.e.:

$ yara-ctypes --blacklist=pid --list
Rules + file.infectors
 + file.loggers
 + file.spammers

Whitelist and blacklist parameters are globbed out (i.e. pid*).

The results are in and we find that file.spammers namespace is producing far too much noise. Let’s remove file.spammers from scan too:

$ yara-ctypes --blacklist=pid,file.spamm --list
Rules + file.infectors
 + file.loggers

To demonstrate the namespace convetion further, we may find ourselves wanting
to run a scan which includes `pid.spammers`. To do this we can simply run:

$ yara-ctypes --blacklist=file.spamm --whitelist=pid.spam,file --list
Rules + file.infectors
 + file.loggers
 + pid.spammers

Building libyara-1.6 for yara-ctypes

This guide captures some of the steps taken to make a clean checkout of
tags/yara-1.6/ build and work for yara-ctypes.

Patch a clean checkout of yara-1.6

Checkout yara-1.6.0 from:

svn co http://yara-project.googlecode.com/svn/tags/yara-1.6.0 .

Modify the following two files from ./libyara/ to allow yara.rules
cleanup after each search:

>>>yara.h<<<
+ void yr_free_matches(YARA_CONTEXT* context);

>>>libyara.c<<<
+ void yr_free_matches(YARA_CONTEXT* context)
+ {
+ RULE* rule;
+ STRING* string;
+ MATCH* match;
+ MATCH* next_match;
+ rule = context->rule_list.head;
+ while (rule != NULL)
+ {
+ string = rule->string_list_head;
+
+ while (string != NULL)
+ {
+ match = string->matches_head;
+ while (match != NULL)
+ {
+ next_match = match->next;
+ yr_free(match->data);
+ yr_free(match);
+ match = next_match;
+ }
+ string->matches_head = NULL;
+ string->matches_tail = NULL;
+ string = string->next;
+ }
+ rule = rule->next;
+ }
+ }

Building for Ubuntu

Install the development pre-requisites:

> sudo apt-get install build-essential flex libpcre3-dev libpcre3 bison

First attempt:

> cd $ROOTDIR/yara-1.6/
> ./configure
> make

	If that fails, try to reconfigure::

	> aclocal
> automake -ac
> autoheader
> autoconf
> ./configure
make

Thats it, nice and easy...

Building for Windows

Build using Mingw32

Install prerequisites:

> install mingw32
> pcre-8.20 builds fine... ./configure && make install

Run the build:

> autoreconf -fiv # force an autoreconf (or update/replace libtools m4)
> install build auto tools (including autoconf autogen)
> find the latest pcre and bison - build them! :P
> cd $ROOTDIR/yara-1.6/
> ./configure
> make

This will get you a 32bit dll. If you figure out how to do it under mingw64,
let me know...

Build under Visual Studios

To build using Visual Studio, the following settings were added to the
windows/libyara/libyara.vcproj Properties Page.

	[General][Configuration Type] = “Dynamic Library (.dll)”

	[C/C++][Runtime Library] = “Multi-threaded DLL (/MD)”

The C/C++ All Options view:

/I"..\..\windows\include" /Zi /nologo /W1 /WX- /O2 /Ob2 /Oi /Ot /Oy- /D "PCRE_STATIC" /D "_WINDLL" /D "_MBCS" /Gm- /MD /GS- /fp:precise /Zc:wchar_t /Zc:forScope /Fp"Release\libyara.pch" /Fa"Release\" /Fo"Release\" /Fd"Release\vc100.pdb" /Gd /TC /wd"4996" /analyze- /errorReport:queue

The Linker All Options view:

/OUT:".\yara\tags\yara-1.6.0\windows\libyara\Release\libyara.dll" /NOLOGO /LIBPATH:"..\lib" /LIBPATH:".\yara\tags\yara-1.6.0\windows\libyara\Release\" /DLL "pcre32.lib" "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib" "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib" "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib" /MANIFEST /ManifestFile:"Release\libyara.dll.intermediate.manifest" /ALLOWISOLATION /MANIFESTUAC:"level='asInvoker' uiAccess='false'" /PDB:".\yara\tags\yara-1.6.0\windows\libyara\Release\libyara.pdb" /PGD:".\yara\tags\yara-1.6.0\windows\libyara\Release\libyara.pgd" /TLBID:1 /DYNAMICBASE /NXCOMPAT /MACHINE:X86 /ERRORREPORT:QUEUE

Finally, to export the functions in the libyara.dll you need to ensure that
each export function includes/yara.h has a __declspec(dllexport)
defined before it:

>>>yara.h<<<
 __declspec(dllexport) RULE* lookup_rule(RULE_LIST* rules, const char* identifier, NAMESPACE* ns);
 __declspec(dllexport) STRING* lookup_string(STRING* string_list_head, const char* identifier);
 __declspec(dllexport) TAG* lookup_tag(TAG* tag_list_head, const char* identifier);
 __declspec(dllexport) META* lookup_meta(META* meta_list_head, const char* identifier);
 __declspec(dllexport) VARIABLE* lookup_variable(VARIABLE* _list_head, const char* identifier);
 __declspec(dllexport) void yr_init();
 __declspec(dllexport) YARA_CONTEXT* yr_create_context();
 __declspec(dllexport) void yr_destroy_context(YARA_CONTEXT* context);
 __declspec(dllexport) int yr_calculate_rules_weight(YARA_CONTEXT* context);
 __declspec(dllexport) NAMESPACE* yr_create_namespace(YARA_CONTEXT* context, const char* name);
 __declspec(dllexport) int yr_define_integer_variable(YARA_CONTEXT* context, const char* identifier, size_t value);
 __declspec(dllexport) int yr_define_boolean_variable(YARA_CONTEXT* context, const char* identifier, int value);
 __declspec(dllexport) int yr_define_string_variable(YARA_CONTEXT* context, const char* identifier, const char* value);
 __declspec(dllexport) int yr_undefine_variable(YARA_CONTEXT* context, const char* identifier);
 __declspec(dllexport) char* yr_get_current_file_name(YARA_CONTEXT* context);
 __declspec(dllexport) int yr_push_file_name(YARA_CONTEXT* context, const char* file_name);
 __declspec(dllexport) void yr_pop_file_name(YARA_CONTEXT* context);
 __declspec(dllexport) int yr_compile_file(FILE* rules_file, YARA_CONTEXT* context);
 __declspec(dllexport) int yr_compile_string(const char* rules_string, YARA_CONTEXT* context);
 __declspec(dllexport) int yr_scan_mem(unsigned char* buffer, size_t buffer_size, YARA_CONTEXT* context, YARACALLBACK callback, void* user_data);
 __declspec(dllexport) int yr_scan_file(const char* file_path, YARA_CONTEXT* context, YARACALLBACK callback, void* user_data);
 __declspec(dllexport) int yr_scan_proc(int pid, YARA_CONTEXT* context, YARACALLBACK callback, void* user_data);
 __declspec(dllexport) char* yr_get_error_message(YARA_CONTEXT* context, char* buffer, int buffer_size);
 __declspec(dllexport) void yr_free_matches(YARA_CONTEXT* context);

Building for OS X Mountain Lion

Install Homebrew and install the following packages:

brew install libtool pcre bison automake autoconf svn

Patch libyara/configure.ac with the following:

>>>libyara/configure.ac<<<
+ m4_pattern_allow([AM_PROG_AR])
+ AM_PROG_AR

Reconfigure the auto build tool chain:

autoreconf -fiv

Due to a bug in the auto config files (somewhere) replace the generated libyara/libtool with:

rm libyara/libtool
ln -s /usr/local/Cellar/libtool/2.4.2/bin/glibtool libyara/libtool

Copy and rename the dynamic link library:

cp ./libyara/.libs/libyara.0.dylib <DESTPATH>/libyara.so

Bundling libyara shared library files

You can add your own libyara.dll/so files to the .libs/ folder before
running python setup.py install

Windows:

./libs/windows/x86_64/libyara.dll
./libs/windows/x86/libyara.dll

Linux:

./libs/linux/x86_64/libyara.so
./libs/linux/x86/libyara.so

OS X:

./libs/darwin/x86_64/libyara.so

Alternatively you can install your libyara files in the correct place such that
libyara_wrapper can find them.

i.e:

Windows:
 <python install dir>\DLLs (or sys.prefix + 'DLLs')
Linux:
 <python env usr root>/lib (or sys.prefix + 'lib'

yara.scan — Thread pool execution of rules matching

This module is responsible for implementing the base Scanner type and various extensions to meet different scanning requirements.

Scanner

	
Scanner([rules_rootpath,whitelist,blacklist,rule_filepath,

	
thread_pool,

	
externals])

	

This is the base Scanner class which initialises and aggregates a Rules class to perform match jobs against. It has the responsibility of managing a job queue and result queue and sets up the interface required for child class Scanner instances.

Scanner implements the iter protocol which yields scan results as they complete. To enable more efficient scanning, Scanner deploys a thread pool for concurrent scanning and manages its execution through its internal job queues. Once a job completes, the job tag id and the results are returned through the dequeue function or yielded during iteration.

PathScanner

	
class yara.scan.PathScanner([args, recurse_dirs, path_end_include, path_end_exclude, path_contains_include, path_contains_exclude, rules_rootpath, **scanner_kwargs])

	

PathScanner extends the Scanner class to enable simple queuing of filepaths found in the file system. It defines an exclude_path algorithm which utilises the path include exclude. PathScanner has a paths property which is an interator for yielding the filepaths it discovers based on the various constraints.

The following example demonstrates how PathScanner can be
operated:

Recursively scan all subdirectories from the path '.'
for path, result in PathScanner(args=['.']):
 print("%s : %s" % (path, result))

FileChunkScanner

	
class yara.scan.FileChunkScanner([file_chunk_size, file_readahead_limit, **path_scanner_kwargs])

	

FileChunkScanner extends PathScanner and defines a way to reads chunks of data from filepaths choosen by PathScanner and enqueue Rules.match_data jobs.

PidScanner

	
class yara.scan.PidScanner([args, **scanner_kwargs])

	

PidScanner ...

yara.cli — A command line YARA rules scanning utility

This module is responsible for implementing the CLI that allows users to
rapidly execute their yara signatures against file(s) and pid(s).

See How to scan for more details.

yara.rules — YARA namespaces, compilation, and matching

Compiles a YARA rules files into a thread safe Rules object ready for
matching.

	Features:

	
	Provides a thread safe yara context manager.

	Detailed control over the loading of multiple YARA rules files into a

	single context.

	A C-like preprocessor for yar files. Allows for #ifdef #ifndef etc.

	Key differences to yara-python.c:

	
	Results returned from a Rules.match(_??) function are stored in a
dict of {namespace:[match,...]}...

	When a callback hander is passed into a Rules.match(_??) function, the
match function will return an empty dict. It is assumed that the callback
handler will retain the match objects that it cares about.

	The match dict inside of a dict returned from a Rules.match(_??)
function no longer contain the namespace (namespace is the key used to
reference the match dict).

	Compatibility with yara-python.c

	
	This module contains an equivalent compile() function

	The Rules object contains an equivalent match() function

	Match objects passed into the registered callback handler are the
equivalent

Rules

	
class yara.rules.Rules(paths={}, defines={}, include_path=[], strings=[], externals={}, fast_match=False)

	Rules manages the seamless construction of a new context per thread and
exposes libyara’s match capability.

	
__init__(paths={}, defines={}, include_path=[], strings=[], externals={}, fast_match=False)

	Defines a new yara context with specified yara sigs

	Options:

	paths - {namespace:rules_path,...}
include_path - a list of paths to search for given #include

directives.

	defines - key:value defines for the preprocessor. Sub in

	strings or macros defined in your rules files.

strings - [(namespace, filename, rules_string),...]
externals - define boolean, integer, or string variables

{var:val,...}

fast_match - enable fast matching in the YARA context

	Note:

	namespace - defines which namespace we’re building our rules under
rules_path - path to the .yar file
filename - filename which the rules_string came from
rules_string - the text read from a .yar file

	
match(filepath=None, pid=None, data=None, **match_kwargs)

	Match on one of the following: pid= filepath= or data=
Require one of the following:

filepath - filepath to match against
pid - process id
data - filepath to match against

	Options:

	externals - define boolean, integer, or string variables
callback - provide a callback function which will get called with

the match results as they comes in.

	Note #1: If callback is set, the Rules object doesn’t bother

	storing the match results and this func will return []...
The callback hander needs to deal with individual
matches.

	Note #2:

	The callback can abort the matching sequence by returning
a CALLBACK_ABORT or raising a StopIteration() exception.
To continue, a return object of None or CALLBACK_CONTINUE
is required.

Functionally equivalent to (yara-python.c).match

	
match_data(data, externals={}, callback=None)

	Match data against the compiled rules
Required argument:

data - filepath to match against

	Options:

	externals - define boolean, integer, or string variables
callback - provide a callback function which will get called with

the match results as they comes in.

	Note #1: If callback is set, the Rules object doesn’t bother

	storing the match results and this func will return []...
The callback hander needs to deal with individual
matches.

	Note #2:

	The callback can abort the matching sequence by returning
a CALLBACK_ABORT or raising a StopIteration() exception.
To continue, a return object of None or CALLBACK_CONTINUE
is required.

Return a dictionary of {“namespace”:[match1,match2,...]}

	
match_path(filepath, externals={}, callback=None)

	Match a filepath against the compiled rules
Required argument:

filepath - filepath to match against

	Options:

	externals - define boolean, integer, or string variables
callback - provide a callback function which will get called with

the match results as they comes in.

	Note #1: If callback is set, the Rules object doesn’t bother

	storing the match results and this func will return []...
The callback hander needs to deal with individual
matches.

	Note #2:

	The callback can abort the matching sequence by returning
a CALLBACK_ABORT or raising a StopIteration() exception.
To continue, a return object of None or CALLBACK_CONTINUE
is required.

Return a dictionary of {“namespace”:[match1,match2,...]}

	
match_proc(pid, externals={}, callback=None)

	Match a process memory against the compiled rules
Required argument:

pid - process id

	Options:

	externals - define boolean, integer, or string variables
callback - provide a callback function which will get called with

the match results as they comes in.

	Note #1: If callback is set, the Rules object doesn’t bother

	storing the match results and this func will return []...
The callback hander needs to deal with individual
matches.

	Note #2:

	The callback can abort the matching sequence by returning
a CALLBACK_ABORT or raising a StopIteration() exception.
To continue, a return object of None or CALLBACK_CONTINUE
is required.

Return a dictionary of {“namespace”:[match1,match2,...]}

yara.rules.load_rules()

	
yara.rules.load_rules(rules_rootpath='/home/docs/checkouts/readthedocs.org/user_builds/yara-ctypes/envs/latest/local/lib/python2.7/site-packages/yara-1.7.7-py2.7.egg/yara/rules', blacklist=[], whitelist=[], include_path=['/home/docs/checkouts/readthedocs.org/user_builds/yara-ctypes/envs/latest/bin', '/usr/local/sbin', '/usr/local/bin', '/usr/sbin', '/usr/bin', '/sbin', '/bin'], **rules_kwargs)

	A simple way to build a complex yara Rules object with strings equal to
[(namespace:filepath:source),...]

YARA rules files found under the rules_rootpath are loaded based on the
exclude namespace blacklist or include namespace whitelist.

i.e.
Where rules_rootpath = ‘./rules’ which contained:

./rules/hbgary/libs.yar
./rules/hbgary/compression.yar
./rules/hbgary/fingerprint.yar

	The resultant Rules object would contain the following namespaces:

	hbgary.libs
hbgary.compression
hbgary.fingerprint

	Optional YARA rule loading parameters:

	rules_rootpath - root dir to search for YARA rules files
blacklist - namespaces “starting with” to exclude
whitelist - namespaces “starting with” to include

	Rule options:

	externals - define boolean, integer, or string variables {var:val,...}
fast_match - enable fast matching in the YARA context

yara.rules.compile()

	
yara.rules.compile(filepath=None, source=None, fileobj=None, filepaths=None, sources=None, **rules_kwargs)

	Compiles a YARA rules file and returns an instance of class Rules

	Require one of the following:

	filepath - str object containing a YARA rules filepath
source - str object containing YARA source
fileobj - a file object containing a set of YARA rules
filepaths - {namespace:filepath,...}
sources - {namespace:source_str,...}

	Rule options:

	externals - define boolean, integer, or string variables {var:val,...}
fast_match - enable fast matching in the YARA context

Functionally equivalent to (yara-python.c).compile

yara.libyara_wrapper — ctypes wrapper for libyara

This module is responsible for wrapping the libyara dynamic library various
exported functions. Using ctypes, it replicates the yara data structures and
exported functions.

See How to build for library details.

 Python Module Index

 y

 		 	

 		
 y	

 	[image: -]
 	
 yara	

 	
 	
 yara.libyara_wrapper	
 Wraps libyara's exported functions

 	
 	
 yara.rules	
 Compile and manage YARA rules

 	
 	
 yara.scan	
 Compile and test YARA against data

Index

 _
 | C
 | F
 | L
 | M
 | P
 | R
 | Y

_

 	
 	__init__() (yara.rules.Rules method)

C

 	
 	compile() (in module yara.rules)

F

 	
 	FileChunkScanner (class in yara.scan)

L

 	
 	load_rules() (in module yara.rules)

M

 	
 	match() (yara.rules.Rules method)

 	match_data() (yara.rules.Rules method)

 	
 	match_path() (yara.rules.Rules method)

 	match_proc() (yara.rules.Rules method)

P

 	
 	PathScanner (class in yara.scan)

 	
 	PidScanner (class in yara.scan)

R

 	
 	Rules (class in yara.rules)

Y

 	
 	yara.libyara_wrapper (module)

 	
 	yara.rules (module)

 	yara.scan (module), [1]

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Introduction to yara-ctypes-python

 		Install guide

 		PyPi install

 		Download and install the master

 		Missing a dll? Try installing MS VC++ 2010 redistributable package

 		Failing to import libyara

 		How to scan using yara-ctypes yara.scan

 		Executing yara.cli

 		Performing a scan

 		YARA rules files and folder

 		Included rules folder

 		Using yara-ctypes rules folders

 		Building libyara-1.6 for yara-ctypes

 		Patch a clean checkout of yara-1.6

 		Building for Ubuntu

 		Building for Windows

 		Building for OS X Mountain Lion

 		Bundling libyara shared library files

 		yara.scan — Thread pool execution of rules matching

 		Scanner

 		PathScanner

 		FileChunkScanner

 		PidScanner

 		yara.cli — A command line YARA rules scanning utility

 		yara.rules — YARA namespaces, compilation, and matching

 		Rules

 		yara.rules.load_rules()

 		yara.rules.compile()

 		yara.libyara_wrapper — ctypes wrapper for libyara

_static/comment.png

_static/plus.png

